

PII: S0960-894X(96)00426-X

NEW CLASS OF POTENT LIGANDS FOR THE HUMAN PERIPHERAL CANNABINOID RECEPTOR

Michel Gallant,* Claude Dufresne, Yves Gareau, Daniel Guay, Yves Leblanc, Petpiboon Prasit, Chantal Rochette, Nicole Sawyer, Deborah M. Slipetz, Nathalie Tremblay, Kathleen M. Metters, and Marc Labelle. Merck Frosst Centre for Therapeutic Research P.O.Box 1005 Pointe Claire - Dorval, Québec, H9R 4P8

ABSTRACT: A new class of potent ligand for the human peripheral cannabinoid (hCB₂) receptor is described. Two indole analogs 13 and 17 exhibited nanomolar potencies (K_i) with good selectivity for the hCB₂ receptor over the human central cannabinoid (hCB₁) receptor. Copyright © 1996 Elsevier Science Ltd

Introduction

In 1993, a human peripheral cannabinoid (hCB₂) receptor, member of the growing class of G-protein-coupled receptors, was disclosed.¹ The discovery of a cannabinoid receptor distinct from the known human central cannabinoid (hCB₁) receptor,² led to renewed interest in the medicinal properties of cannabinoids. Pharmacological investigations on the use of cannabis, of which tetrahydrocannabinol (Δ^9 -THC) is the main active constituent, have demonstrated anti-emetic,³ analgesic,⁴ and anti-inflammatory⁵ effects. Other studies have also suggested that Δ^9 -THC could be used in the treatment of glaucoma,⁶ asthma,⁷ motion disorder,⁸ and muscle spasms.⁹ In spite of this large potential for therapeutic benefits, the use of cannabinoids has been limited by their undesirable psychotropic properties.¹⁰ The work described in this paper stems from the hypothesis that a selective and potent ligand for hCB₂ receptor would show therapeutically useful effects.¹¹

The search for a hCB₂ receptor ligand was initiated by submitting a large number of compounds to *in vitro* binding assays^{12,13} on the hCB receptors. These compounds included a series of analogs selected through a topological similarity search using WIN-55212-2,¹⁴ a known potent ligand to the hCB receptor,¹⁵ as the template. Three indole derivatives (e.g. 1, 2,¹⁶ and 3,¹⁷ Fig. 1) were found to have moderate activity on the hCB₂ receptor (Tables 1, and 4). They were used as leads in two potential series of either N¹-benzoyl or N¹-naphthoyl indole analogs.

Discussion

The work on the N^1 -benzoyl indole series initiated by the lead compounds 1 and 2 was mainly focused on the significance of substitution at N^1 and C^3 . For compounds bearing an identical benzoyl substituent at N^1 , the presence of a morpholine unit attached at C^3 was beneficial for potency on the hCB₂ receptor, as indicated by the relative potencies of indomethacin 4, indomethacin methyl ester 5, the morpholinyl amide 1 and the corresponding amine 6 (Table 1). The morpholine moiety may be linked to the indole core through an ethylene tether (6) or a acetyl tether (1) with minimal change in potency on the hCB₂ receptor.

Figure 1.

The substitution pattern on the N^1 -benzoyl group influences potency in this series. The *ortho*-chloro substituted N^1 -benzoyl indole 2 showed increased hCB₂ potency (≈ 10 -fold) compared to the *para*-chloro analog 5. Similarly, for compounds bearing a morpholine unit at C^3 , the *ortho*-chloro substituted indole 7 was more potent (≈ 6 -fold) than the *para*-chloro analog 1.

Compound	\mathbb{R}^1	\mathbb{R}^2	K _i a(nM) hCB ₂	K_i $a(nM)$ hCB_1
1	C(O)-N-morpholinyl	4-C1	435 ± 43	>20000 (n = 2)
2	COOMe	2-Cl	397 ± 27	1720 ± 425
4	СООН	4-Cl	>20000 (n = 3)	>20000 (n = 2)
5	COOMe	4-Cl	4021 ± 1977	>20000 (n = 2)
6	CH ₂ -N-morpholinyl	4-Cl	213 ± 25	10253 ± 4848
7	C(O)-N-morpholinyl	2-Cl	69 ± 4	3600 ± 706

(a) CB receptor filtration binding assays were performed using recombinant CB_1^{12} or CB_2^{13} receptors. K_i values represent the mean \pm S.E.M. from three independent determinations performed in duplicate unless otherwise indicated.

Using the morpholinylacetyl unit at C^3 , the effect of halogen substitution on the N^1 -benzoyl group was investigated (Table 2). The *meta*-chloro substituted indole 8 showed a decrease in potency on the hCB₂ receptor relative to 7. Of the three dihalogenated-benzoyl analogs (9, 10, and 11) only the N^1 -(2,3-dichlorobenzoyl) indole 9 showed a significant increase in potency ($K_i = 14$ nM for hCB₂) and selectivity (K_i hCB₁ / K_i hCB₂ = 146) over 7.

Table 2. Analogs of indole 7

Compound	R	$K_i(nM) hCB_2$	$K_{i}(nM) hCB_{t}$
7	2-Cl	69 ± 4	3600 ± 706
8	3-Cl	354 ± 45	16800, 13000
9	2-Cl, 3-Cl	14 ± 6	2043 ± 183
10	2-Cl, 4-F	134 ± 11	5570 ± 1441
11	2-Cl, 6-Cl	59 ± 7	2553 ± 611

The SAR studies around the 2,3-dichlorobenzoyl indole 9 were pursued by investigating the effect of the N^1 -carbonyl, the C^3 residue and the substitution on the indole core (Table 3). Replacing the carbonyl function of the N^1 -benzoyl indole 9 by a methylene unit led to the N^1 -benzyl indole 12, and resulted in a dramatic loss in potency for the hCB_2 receptor. Conversely, the key morpholine moiety may be linked to the indole core, through either an ethylene tether (13) or an acetyl tether (9) with comparable profile. Truncation of the ethylene tether of indole 13 by one methylene unit led to no loss of potency on the hCB_2 receptor, as exemplified by 14. Finally, the presence of a methoxy unit at C^5 on the indole core had no effect on potency as shown by the K_i of 13 vs 15 on both receptors .

Table 3. Analogs of indole 9

Compound	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	$K_i(nM) hCB_2$	$K_i(nM) hCB_1$
9	(CO)-N-morpholinyl	C(O)	OCH_3	14 ± 6	2043 ± 183
12	(CO)-N-morpholinyl	CH_2	OCH_3	1046 ± 367	>20000 (n = 2)
13	CH ₂ -N-morpholinyl	C(O)	OCH_3	12.0 ± 0.2	1917 ± 381
14	N-morpholinyl	C(O)	OCH_3	22 ± 5	3363 ± 856
15	CH ₂ -N-morpholinyl	C(O)	Н	27 ± 2	3193 ± 881

The relative potencies of the *ortho*-chloro substituted N^1 -benzoyl indole 2 (Table 1) and the N^1 -naphthoyl analog 3 (Table 4) suggests that these substituents may be topologically similar. This hypothesis was substantiated by the increased potency of the 2,3-disubstituted N^1 -benzoyl indole 9 ($K_i = 14 \text{ nM}$ for hCB_2) over the monosubstituted analogs 7 ($K_i = 69 \text{ nM}$ for hCB_2) and 8 ($K_i = 354 \text{ nM}$ for hCB_2). Consequently, it appears likely that the 2,3-dichlorobenzoyl and the 1-naphthoyl pharmacophores have similar binding modes on the cannabinoid receptors.

The results of the SAR studies performed in the N^1 -benzoyl indole series were ported to the N^1 -naphthoyl indole series. A morpholine unit was introduced at C^3 with an ethylene tether to give the indole 16 which was equipotent to the lead compound 3. Potency was increased dramatically by removing one methylene in the C^3 tether of 16 resulting in compound 17 which has a K_i of 8.5 nM on the hCB₂ receptor. A similar transformation in the N^1 -benzoyl series (14 versus 13) had limited effect on potency. The presence of a carbonyl unit as a tether between the indole and the naphthyl unit was critical, the N^1 -naphthylindole 18 was relatively inactive on the hCB₂ receptor. This is in line with the observation made in the N^1 -benzoyl series (see 12, Table 3).

Table 4. Analogs of indole 3

^	R¹
	Ţ
~ 1	N' \
1	\dot{R}^2

Compound	\mathbf{R}^1	\mathbb{R}^2	$K_{i}\left(nM\right) hCB_{2}$	$K_i(nM) hCB_1$
3			142 ± 21	4610, 1890
16	CH ₂ CH ₂ -N-morpholinyl	1-naphthoyl	216 ± 33	2183 ± 825
17	CH ₂ -N-morpholinyl	1-naphthoyl	8.5 ± 1.6	877 ± 222
18	CH ₂ -N-morpholinyl	1-naphthyl	7840, 2700	6680 ± 2359
19	1-naphthoyl	CH ₂ CH ₂ -N-morpholinyl	14.0 ± 0.4	638 ± 172

Publications¹⁸⁻²² and patents have appeared in recent years on novel series of cannabinoid receptor ligands. It was shown that a number of acyclic analogs of WIN-55212-2, ¹⁴ such as WIN-56098²³ were potent ligands on the hCB₁ receptor. These aminoalkyl indoles are structurally related to the N¹-naphthoyl indole series described in this paper. These two series differ by the position of the naphthoyl and alkylmorpholinyl substituents on the indole core. In the WIN series the naphthoyl is located at C³ and the alkylmorpholinyl at N¹ as illustrated by indole 19, ^{21,22} which was prepared and tested. Comparing these series suggests that substituents at N¹ and C³ may be somewhat interchangeable (16 versus 19) and that the loss of affinity for the hCB₂ receptor in the N¹-naphthoyl indole series, can be alleviated by shortening the tether at C³ as exemplified by indole 17. Similar observation of N¹ and C³ interchangeability in indoles have been reported ¹⁹ earlier. The indole moiety can thus be thought of as a scaffold on which to position the key aryl and alkylmorpholinyl groups.

Chemistry

Indoles of type **A** (Tables 1, 2, and 3) having a morpholine subunit attached through an amide bond were prepared by a DCC type coupling²⁴ on the commercially available 5-methoxyindole-3-acetic acid followed by a N^1 -acylation of the indole potassium salt²⁵ using the appropriate acid chloride. Indoles of type **B** (Tables 1, and 3) were prepared by a C^3 -alkylation of the indole zinc salt²⁶ followed by the previously described N^1 -acylation. The synthesis of indoles of type **C** (Table 3) started with a N^1 -acylation followed by reductive amination.²⁷ Indoles of type **D** (Tables 3 and 4) were prepared by C^3 -acylation of an indole zinc salt followed by a N^1 -alkylation of the indole sodium salt.

Scheme 1. General preparation of C³ and N¹ substituted indoles

a Reagents: (a) DCC, morpholine, THF (b) i. KHMDS, HMPA, THF ii. RCOCl
 (c) i. MeMgCl, ZnCl₂, Et₂O ii. R³CH₂Cl (d) NaCNBH₃, morpholine, MeOH, HCl
 (e) i. MeMgCl, ZnCl₂, Et₂O ii. R³COCl (f) i. NaH, DMF ii. R²CH₂Cl

Conclusion

We have described SAR studies in two indole series that allowed the identification of compounds with nanomolar potency on the hCB₂ receptor and selectivity against the hCB₁ receptor. Some key features are the presence of either a 2,3-dihalogenatedbenzoyl or a 1-naphthoyl residue at the N¹ position and a alkylmorpholinyl residue at C^3 . Substitution at the indole C^5 position had no influence on the affinity for the hCB₂ receptor. We have identified two potent compounds 13 (L-768,242) and 17 (L-759,787) with K_i of 12 nM and 8.5 nM, respectively, for the hCB₂ receptor. They exhibit good selectivity over the hCB₁ receptor (hCB₁/hCB₂ = 160 for 13 and 103 for 17). Studies on the pharmacology of these compounds are being pursued and will be reported in the near future.

References and notes

- 1. Munro, S.; Thomas, K. L.; Abu-Shaar M. Nature 1993, 365, 61.
- 2. Matsuda L. A.; Lolait S. J.; Brownstein M. J.; Young A. C.; Bonner T. I. Nature 1990, 346, 561. (b) Gérard, C. M.; Mollereau, C.; Vassart, G.; Parmentier M. Biochem. J. 1991, 279, 129.
- 3. Gralla, R. J.; Tyson L. B. Marihuana' 84. Proceedings of the Oxford Symposium on Cannabis, Harvey, D. J., Ed.; IRL: Oxford, 1984; pp 721-727.
- 4. Burstein S. US Patent 4,847,290, 1989; Chem. Abstr. 1989, 112, 677g.
- (a) Hollister, L. E. Pharmacol. Rev. 1986, 38, 1. (b) Johnson, M. R.; Melvin L. S. Cannabinoids as Therapeutic Agents; Mechoulam, R., Ed.; CRC: Boca Raton FL, 1986; pp 121-145. d) Dewey, W. L. Pharma. Rev. 1986, 38, 151.

- (a) Hepler, R. S.; Frank, I. R. JAMA 1971, 10, 1392.
 (b) Perez-Reyes, M.; Wagner, D.; Wall, M. E.; Davis, K. H. The Pharmacology of Marihuana; Braude, M. C.; Szara, S. Ed.; Raven: NewYork, 1976; pp 829-832.
 (c) Green, K.; Symonds, C. M.; Oliver, N. W.; Elijah, R. D. Curr. Eye Res. 1982, 4, 247.
 (d) Green, K.; McDonald T. F. J. Toxicol.-Cut. Ocular. Toxicol. 1987, 4, 309.
- Chang A. E.; Shiling, D. J.; Stillman, R. C.; Goldberg N. H.; Seipp, C. A.; Barofsky, I.; Simon, R. M.; Rosenberg S. A. Annals of Internal Medecin 1979, 91, 819.
- 8. (a) Petro, D. J.; Ellenberger, C. J. Clin. Pharmacol. 1981, 21, 413. (b) Campanella, G.; Roy, M.; Barbeau, A. Ann. Rev. Pharmacol. Toxicol. 1987, 27, 113. (c) Sandyk, R.; Awerbuch, G. J. Clin. Psychopharmacol. 1988, 6, 444.
- 9. Hollister L. E. Marihuana' 84. Proceedings of the Oxford Symposium on Cannabis, Harvey, D. J., Ed.; IRL, Oxford, 1984; pp 701-704.
- 10. Hollister, L. E. Pharmacol. Rev. 1986, 38, 1.
- 11. The functionality of the hCB₂ receptor has not yet been well established. Its localization outside the central nervous system makes it a likely canditate for being involved in the peripheral events mediated by cannabinoid, with no psychotropic effect.
- 12. CB₁ receptor filtration binding assay was performed similarly to the one described in reference 2 (a). Details on the specific of our assays will be found in the following paper; Greig G. M.; Dufresne, C.; Evans J.; Favreau, L.; Francis D.; Gallant, M.; Gareau, Y.; Kargman S.; Labelle, M.; Metters, K. M.; Rochette C.; Ruel R.; Sawyer N.; Slipetz, D. M.; Tremblay N.; Weech P. K.; O'Neill, G. P. Expression and ligand binding characterization of the recombinant human central and peripheral cannabinoid receptors; submitted
- 13. Slipetz, D. M.; O'Neill, G. P.; Favreau, L.; Dufresne, C.; Gallant, M.; Gareau, Y.; Guay, D.; Labelle, M.; Metters, K. M. Mol. Pharmacol. 1995, 48, 352.
- 14. Ward S. J. US Patent 5,112,820, 1992; Chem. Abstr. 1992, 117, 171460.
- 15. Kuster, J. E.; Stevenson, J. I.; Ward, S. J.; D'Ambra, T. E.; Haycock D. A. J. Pharmacol. Exp. Ther. 1993, 264, 1352.
- 16. Shen T.Y. Belg. Patent 615,395, 1962; Chem. Abstr. 1963, 59, 8707e.
- 17. Shen T.Y. US Patent 3,161,654, 1964; Chem. Abstr. 1965, 63, 2957b.
- 18. Devane, W. A.; Dysarz III, F. A.; Johnson, M. R.; Melvin, L. S.; Howlett, A. C. *Mol. Pharmacol.* **1988**, 34, 605.
- 19. Bell, M. R.; D'Ambra, T. E.; Kumar, K.; Eissenstat, M. A.; Herrmann, Jr., J. L.; Wetzel, J. R.; Rosi, D.; Philion, R. E.; Daum, S. J.; Hlasta, D. J.; Kullnig, R. K.; Ackerman, J. H.; Haubrich, D. R.; Luttinger, D. A.; Baizman, E. R.; Miller, M. S.; Ward, S. J. J. Med. Chem. 1991, 34, 1099.
- 20. D'Ambra, T. E.; Estep, K. G.; Bell, M. R.; Eissenstat, M. A.; Josef, K. A. Ward, S. J.; Haycock, D. A.; Baizman, E. R.; Casiano, F. M.; Beglin, N. M.; Chippari, S. M.; Grego, J. D.; Kullnig R. K.; Daley, G. T. J. Med. Chem. 1992, 35, 124.
- Eissenstat, M. A.; Bell, M. R.; D'Ambra, T. E.; Alexander, E. J.; Daum, S. J.; Ackerman, J. H.; Gruett, M. D.; Kumar, K.; Estep, K. G.; Olefirowicz, E. M.; Wetzel, J. R.; Alexander, M. D.; Weaver III, J. D.; Haycock, D. A.; Luttinger, D. A.; Casiano F. M.; Chippari, S. M.; Kuster J. E.; Stevenson J. I.; Ward S. J. J. Med. Chem., 1995, 38, 3094.
- Kumar, K.; Alexander, E. J.; Bell, M. R.; Eissenstat, M. A.; Casiano, F. M.; Chippari, S. M.; Haycock, D. A.; Luttinger, D. A.; Kuster, J.E.; Miller, M. S.; Stevenson, J. I.; Ward, S. J Bioorg. Med. Chem. Lett. 1995, 5, 381.
- 23. D'Ambra, T. E.; Bacon, E. R.; Bell, M. R.; Carabateas, P. M.; Eissenstat, M. A.; Kumar, K.; Mallamo, J. P.; Ward, S. J. US Patent 5,324,737, 1992; *Chem. Abstr.* 1992, 116, 6406x.
- 24. Sheehan, J. C.; Hess, G. P. J. Am. Chem. Soc. 1955, 77, 1067.
- 25. It was found that the N¹ acylation of indole using an acid chloride as the acyl source was greately improved if the indole potassium salt (KHMDS) was used in presence of HMPA instead of the usual sodium salt.
- 26. Bergman, J.; Venemalm, L. Tetrahedron 1990, 46, 6061.
- 27. Borch, R. F.; Hassid, A. I. J. Org. Chem. 1972, 37, 1673.